Metal-Free Click Reaction

DOI: 10.1002/anie.201108850

Traceless Tosylhydrazone-Based Triazole Formation: A Metal-Free Alternative to Strain-Promoted Azide–Alkyne Cycloaddition**

Sander S. van Berkel, Sebastian Brauch, Lars Gabriel, Michael Henze, Sebastian Stark, Dimitar Vasilev, Ludger A. Wessjohann, Muhammad Abbas, and Bernhard Westermann*

The unprecedented impact of the Cu^I-mediated Huisgen cycloaddition reaction is demonstrated by its manifold applications in the life sciences and material sciences. [1,2] The requirement of a metal catalyst, however, has limited the utilization of this cycloaddition reaction in areas such as photophysical chemistry and chemical biology. Consequently, several metal-free processes have been developed to serve as orthogonal ligation methods.[3] At present the foremost method is the strain-promoted azide-alkyne cycloaddition (SPAAC) as is reflected by the fast growing number of cyclooctyne derivatives developed by the groups of Bertozzi,^[4] Boons,^[5] Rutjes,^[6] and van Delft^[7] (Table 1). In addition to SPAAC, SPANC,[8] and SPANOC,[9] several other metal-free click methods relying on cycloaddition reactions with alkenes have received considerable attention.[10-13]

Disadvantages of these strategies are: 1) the formation of equimolar quantities of the 1,4 and 1,5 regioisomers; and 2) the requirement of functional handles on both substrates, for example, an activated double or triple bond and the appropriate complementary counterpart. To reduce the synthetic efforts, one of the functionalities should be readily available, that is, inherent to a large variety of starting materials, so that it can be used without further manipulation in a click-type reaction.

In 1986 Sakai et al. described such a reaction for the elegant formation of triazoles and thiadiazoles. ^[14] The Sakai approach relies on the condensation of a primary amine and an α , α -dichlorotosylhydrazone (1) to form regioselectively a 1,4-substituted triazole (3) under ambient reaction conditions (Scheme 1). As a result of the highly chemoselective character of this reaction, protecting group strategies, in

[*] Dr. S. S. van Berkel, Dipl.-Chem. S. Brauch, L. Gabriel, Dipl.-Chem. M. Henze, Dipl.-Chem. S. Stark, Dipl.-Chem. D. Vasilev, Prof. Dr. L. A. Wessjohann, Dr. M. Abbas, Prof. Dr. B. Westermann Department of Bioorganic Chemistry

Leibniz-Institute of Plant Biochemistry

Weinberg 3, 06120 Halle (Germany)

E-mail: bwesterm@ipb-halle.de

Homepage: http://www.ipb-halle.de

Prof. Dr. L. A. Wessjohann, Prof. Dr. B. Westermann

Institute of Chemistry

Martin-Luther-University, Halle-Wittenberg

Kurt-Mothes-Strasse 2, 06120 Halle (Germany)

[**] The donation of phytosphingosine by T. Böhmer, Evonik-Industries, Essen (Germany) is highly appreciated. This work was in part financed by a WGL-PFI project.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201108850.

Group	Name	Structure
Bertozzi et al.	$\begin{array}{c} MOFO,X\!=\!H \\ DIFO,X\!=\!F \end{array}$	F _X
Bertozzi et al.	DIMAC	MeON.R
van Delft et al.	BCN	H OR
Boons et al.	DIBO	OR
Rutjes et al.	DIBAC	N. R

Scheme 1. Proposed mechanism for the Sakai reaction incorporating the Bamford–Stevens intermediate. Ts = tosyl.

principal, seem to be unnecessary. Surprisingly, this elegant and mild protocol for the formation of stable 1,2,3-triazoles has found only infrequent applications.^[15]

Despite the evident potential of this reaction, it has not been fully exploited; that is, neither the mechanism nor the scope and limitations have been explored. Here we report our findings concerning the Sakai triazole formation reaction and demonstrate the suitability of this methodology as a strategy for metal-free triazole conjugation and an alternative to the traditional azide–alkyne cycloaddition.

For the identification of the scope and limitations of the Sakai reaction, two α,α -dichlorotosylhydrazones ($\mathbf{1a}^{[16]}$ and $\mathbf{1b}$)^[15a] were prepared and reacted with a variety of primary amines ($\mathbf{2a-j}$). The reactions were performed either in a solvent mixture of acetonitrile and ethanol (1:1 v/v%) or in methanol, in the presence of six equivalents of N,N-diisopropylethylamine (DiPEA). These simple reaction con-

ditions gave triazoles **3aa-3aj** and **3ba-3bj** (see Scheme 2) in good to excellent yields when the reaction mixtures were stirred for up to 16 h at ambient temperatures.^[17]

Ts NH
$$R^2NH_2$$
 (2a-j) R^2 $N-N$ N $N-N$ N

Scheme 2. Primary-amine-derived triazole products (3). Segments from the starting amine 2 are depicted in blue.

Focusing on the formation of C_{aryl}—N-containing structures, a frequently reoccurring structural motif in pharmaceutical compounds, often prepared by metal-catalyzed cross-coupling reactions, ^[18] we tested the suitability of various anilines (2a-e) in the Sakai reaction. Both electron-rich and electron-poor anilines served as starting material for the production of various phenyl triazoles (3aa-3ae and 3ba-3be, starting from 1a and 1b, respectively). The yields of the isolated products were in most cases good to excellent. ^[19] Dicarboxylic acid 2c could be used without protecting groups and triazole 3ac was obtained smoothly. A fragment frequently used in affinity/activity-based protein profiling is 4-aminobenzophenone (2e). Facile conjugation of either tosylhydrazone (1a or 1b) to the amino group was readily achieved, leading to triazoles 3ae and 3be, respectively.

Shifting from anilines to benzyl and aliphatic amines (2 f-j), also gave the corresponding triazoles in high yields. To investigate the amine chemoselectivity, tosylhydrazones 1 a,b were reacted with 4-aminophenylethylamine (2 f). In both cases immediate bis(triazole) formation was observed leading to products 3 af (69%) and 3 bf (55%) in good yields. These results indicate poor chemoselectivity regarding aromatic amines over aliphatic amines; however, more examples are required. No restrictions were observed when aliphatic amines 2h-j were used, including acetal-functionalized amine 2j, leading to the corresponding triazoles 3 ah-3 aj and 3 bh-3 bj in good to excellent yields (up to 96%).

The incorporation of triazoles in peptides and proteins applied in peptidomimetics^[20] is often not possible owing to the difficult stereoselective synthesis of azides adjacent to the chiral center of an amino acid. Enantiomerically pure α -azides can be generated from their corresponding alcohols by a modified Mitsunobu reaction^[21] or by the kinetic resolution protocol described by Finn and Fokin.^[22] The Sakai reaction, however, would allow the use of readily available chiral α -amines. As an example, enantiomerically pure (S)-1-phenylethylamine (S) was reacted with tosylhydrazones S0 resulting in the formation of triazoles S1 and S2 and S3 in quantitative yield after only 30 min or S3 and 1 hour for S4. HPLC analysis on a chiral stationary phase indicated that no racemization had occurred during the reaction.

In continuation of our efforts to determine the scope and limitations of this procedure, we focused on the use and modification of different α,α -dichloroketones (Scheme 3). As

Scheme 3. A) 1-Aminotriazole formation upon treatment of α,α -dichloroacetophenone with tosylhydrazine; B) attempted synthesis of tosylhydrazone 1d; C) formation of functional tosylhydrazones 1e and 1f

was also demonstrated by Sakai and co-workers, [14] isolation of tosylhydrazone 1c obtained from α,α -dichloroacetophenone and tosylhydrazine could not be accomplished. Instead, the N-substituted triazole 4 was isolated after crystallization (Scheme 3 A). This product is presumably generated after osazone formation of intermediate 1c with a second equivalent of tosylhydrazine. [23] Saponification of the ester moiety of tosylhydrazone 1b should result in tosylhydrazone 1d (Scheme 3 B), which could then be utilized in further functional group transformations. Unfortunately, under the employed reaction conditions (mild basic or acidic) the desired product 1d was not obtained. Most likely, the mild basic conditions favor the formation of the diazo intermediate which undergoes decomposition in a subsequent step following the Bamford–Stevens mechanism. [24]

Conversely, mild acidic conditions appeared to give no hydrolysis at all. With the purpose of obtaining functional tosylhydrazones, a concise synthetic strategy was employed (Scheme 3 C). In the first step a cooled solution of ε -lactone in CH₂Cl₂ was treated with lithium diisopropylamide (LDA) resulting in the formation of the desired α,α -dichloroketone 5 (67%).^[25] This compound could then either be transformed into the corresponding tosylhydrazone 1e (52%), or treated with periodate and converted into the carboxylic acid derivative 6 (94%). Finally, α,α -dichloroketone 6 was reacted with tosylhydrazine to generate tosylhydrazone 1f in 40% yield (nonoptimized conditions). The obtained tosylhydrazones (1e and 1f) were subsequently subjected to the Sakai reaction following the established protocol (see Scheme 4). In accordance with the observations for 2g, products 3eg and 3 fg were obtained in good yields and with retention of configuration.

Ts NH
$$\frac{2g}{\text{Cl}}$$
 R^1 $\frac{2g}{\text{EtOH/MeCN}}$ R^1 R^1

Scheme 4. Sakai reaction with functional tosylhydrazones 1e and 1f.

In work on biologically significant targets we focused on the modification of phytostigmine (7) and psychosine (9; Scheme 5). The N-acylated phytoceramides, like the analogous N-acylated ceramides, show a pronounced cytotoxic effect on different cell types. [26] Moreover, corresponding triazole-modified, metabolically stable ceramides and phytoceramides have previously been synthesized and evaluated successfully,[27] demonstrating the amide-bond mimicry of 1,2,3-triazoles. Elaborating on this topic we employed the Sakai reaction of tosylhydrazone 1a and phytosphingosine (7) to prepare 4-Me-triazolyl-phytoceramide 8a (77%) in a single step. In addition to tosylhydrazone 1a, α,α -dichlor-

Scheme 5. Application of the Sakai reaction in the synthesis of triazolemodified phytoceramides 8a-8c and modified psychosine 10.

10 (48%)

otosylhydrozones 1e and 1f were also utilized in the coupling reaction with 7. This procedure generated the corresponding triazole analogues 8b and 8c in high yields (76% and 89%, respectively) in a single step, starting from the unprotected phytosphingosine, thus laborious protection and deprotection steps could be sidestepped.

Psychosine is a glycosphingolipid occurring in the pathology of globoid cell leukodystrophy (GLD), a genetic metabolic disorder that results from the absence of the enzyme galactosyl ceramide. [28] Recently, photoaffinity probes were employed as useful tools for identifying these yet unknown receptors.^[29] The derivatization presented in Scheme 5 enables the facile, straightforward synthesis of suitable probes. The triazole-modified psychosine 10 could be synthesized from psychosine (9) and tosylhydrazone 1e in a single step in a moderate 48% yield. Again, thanks to the superior chemoselectivity of this protocol, previously unknown modifications can be incorporated and a highly functionalized molecule can be prepared without laborious protecting group manipulations.

The examples herein clearly show the versatility of the Sakai reaction as a strategy for metal-free triazole formation. In contrast to the strain-promoted azide-alkyne cycloaddition reaction, this methodology applies readily accessible starting materials such as amines and α,α -dichlorotosylhydrazones. The latter can be prepared from cheap and commercially available starting materials by a two-step procedure. Moreover, highly defined products are obtained as a result of the regioselective formation of exclusively 1,4-substitued triazoles. Currently investigations are underway in our laboratories regarding the use of the Sakai reaction in bioconjugation strategies for the modification of complex biological targets and surfaces.

Experimental Section

General procedure: A cooled solution (0°C) of amine 2 (0.25 mmol) in ethanol (3 mL) was treated with N,N-diisopropylethylamine (0.26 mL, 1.50 mmol, 6 equiv). The solution was stirred for 10 min before a solution of hydrazone 1 (0.33 mmol, 1.3 equiv) dissolved in acetonitrile (2 mL) was added dropwise. Stirring was continued at room temperature until the reaction was complete (checked by thinlayer chromatography). Subsequently, all volatiles were removed under reduced pressure and the residue was purified by column chromatography.

Published online: April 18, 2012

Keywords: bioconjugation · click chemistry · nitrogen heterocycles · Sakai reaction

5345

^[1] For reviews see the following thematic issues: a) Acc. Chem. Res. **2011**, 44, 651-839; b) Chem. Soc. Rev. **2010**, 39, 1221-1408; c) QSAR Comb. Sci. 2007, 26.

^[2] Click chemistry for biotechnology and materials science (Ed.: J. Lahann), Wiley, Weinheim, 2009.

^[3] For excellent reviews see: a) J. M. Baskin, C. R. Bertozzi, Aldrichimica Acta 2010, 43, 15-23; b) E. M. Sletten, C. R. Bertozzi, Angew. Chem. 2009, 121, 7108-7133; Angew. Chem. Int. Ed. 2009, 48, 6974-6998. For early examples of strain-

- promoted cycloadditions see: c) G. Wittig, A. Krebs, *Chem. Ber.* **1961**, *94*, 3260–3275; d) A. T. Blomquist, L. H. Liu, *J. Am. Chem. Soc.* **1953**, *75*, 2153–2154; e) H. N. C. Wong, F. Sondheimer, *Tetrahedron* **1981**, *37*, 99–109.
- [4] a) N. J. Agard, J. M. Baskin, J. A. Prescher, C. R. Bertozzi, ACS Chem. Biol. 2006, 1, 644-648; b) J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, Proc. Natl. Acad. Sci. USA 2007, 104, 16793-16797; c) E. M. Sletten, C. R. Bertozzi, Org. Lett. 2008, 10, 3097-3099; d) T. Plass, S. Milles, C. Koehler, C. Schultz, E. A. Lemke, Angew. Chem. 2011, 123, 3964-3967; Angew. Chem. Int. Ed. 2011, 50, 3878-3881.
- [5] X. H. Ning, J. Guo, M. A. Wolfert, G. J. Boons, Angew. Chem. 2008, 120, 2285–2287; Angew. Chem. Int. Ed. 2008, 47, 2253–2255
- [6] M. F. Debets, S. S. van Berkel, S. Schoffelen, F. P. J. T. Rutjes, J. C. M. van Hest, F. L. van Delft, *Chem. Commun.* 2010, 46, 97– 90
- [7] J. Dommerholt, S. Schmidt, R. Temming, L. J. A. Hendriks, F. P. J. T. Rutjes, J. C. M. van Hest, D. J. Lefeber, P. Friedl, F. L. van Delft, *Angew. Chem.* 2010, 122, 9612–9615; *Angew. Chem. Int. Ed.* 2010, 49, 9422–9425.
- [8] a) X. Ning, R. P. Temming, J. Dommerholt, J. Guo, D. B. Ania, M. F. Debets, M. A. Wolfert, G.-J. P. H. Boons, F. L. van Delft, Angew. Chem. 2010, 122, 3129-3132; Angew. Chem. Int. Ed. 2010, 49, 3065-3068; b) C. S. McKay, J. Moran, J. P. Pezacki, Chem. Commun. 2010, 46, 931-933.
- [9] A. M. Jawalekar, E. Reubsaet, F. P. J. T. Rutjes, F. L. van Delft, Chem. Commun. 2011, 47, 3198–3200.
- [10] M. F. Debets, S. S. van Berkel, J. Dommerholt, A. J. Dirks, F. P. J. T. Rutjes, F. L. van Delft, Acc. Chem. Res. 2011, 44, 805 – 815.
- [11] For alkene-azide cycloadditions see: S. S. van Berkel, A. J. Dirks, M. F. Debets, F. L. van Delft, J. J. L. M. Cornelissen, R. J. M. Nolte, F. P. J. T. Rutjes, *ChemBioChem* 2007, 8, 1504–1508; for alkene-nitril oxides cycloadditions see: K. Gutsmiedl, C. T. Wirges, V. Ehmke, T. Carell, *Org. Lett.* 2009, 11, 2405–2408.
- [12] For photoinduced cycloadditions of tetrazoles to alkenes see:
 a) Y. Wang, C. I. Rivera Vera, Q. Lin, Org. Lett. 2007, 9, 4155 4158;
 b) W. Song, Y. Wang, J. Qu, M. M. Madden, Q. Lin, Angew. Chem. 2008, 120, 2874 2877; Angew. Chem. Int. Ed. 2008, 47, 2832 2835.
- [13] For inverse-demand Diels-Alder reactions of tetrazines and trans-cyclooctenes see: a) M. L. Blackman, M. Royzen, J. M. Fox, J. Am. Chem. Soc. 2008, 130, 13518-13519; b) N. K.

- Devaraj, R. Upadhyay, J. B. Haun, S. A. Hilderbrand, R. Weissleder, *Angew. Chem.* **2009**, *121*, 7147–7150; *Angew. Chem. Int. Ed.* **2009**, *48*, 7013–7016.
- [14] K. Sakai, N. Hida, K. Kondo, Bull. Chem. Soc. Jpn. 1986, 59, 179–183.
- [15] a) R. Hanselmann, G. E. Job, G. Johnson, R. Lou, J. G. Martynow, M. M. Reeve, Org. Process Res. Dev. 2010, 14, 152–158; b) O. A. Phillips, E. E. Udo, M. E. Abdel-Hamid, R. Varghese, Eur. J. Med. Chem. 2009, 44, 3217–3227; c) F. Reck, F. Zhou, M. Girardot, G. Kern, C. J. Eyermann, N. J. Hales, R. R. Ramsay, M. B. Gravestock, J. Med. Chem. 2005, 48, 499–506; d) M. S. Raghavendra, Y. Lam, Tetrahedron Lett. 2004, 45, 6129–6132; e) A. C. Tomé in Science of Synthesis section 13.13 (Ed.: G. Thieme), Stuttgart, 2004; f) V. P. Krivopalov, O. P. Shkurko, Russ. Chem. Rev. 2005, 74, 339–379.
- [16] B. Föhlisch, R. Flogaus, *Synthesis* 1984, 734–736; J. Barluenga,
 L. Llavona, J. M. Concellon, M. Yus, *J. Chem. Soc. Perkin Trans.* 1 1991, 297–300.
- [17] In all cases only the 1,4-substituted triazole was obtained. See the Supporting Information for more examples.
- [18] J. D. Senra, L. C. S. Aguiar, A. B. C. Simas, Curr. Org. Synth. 2011, 8, 53-78.
- [19] In case of the less reactive 4-amino-7-methylcoumarin (AMC), the yield did not surpass 50% for either tosylhydrazone.
- [20] Y. L. Angell, K. Burgess, Chem. Soc. Rev. 2007, 36, 1674-1689.
- [21] A. S. Thompson, G. R. Humphrey, A. M. DeMarco, D. J. Mathre, E. J. J. Grabowski, J. Org. Chem. 1993, 58, 5886-5888.
- [22] J.-C. Meng, V. V. Fokin, M. G. Finn, Tetrahedron Lett. 2005, 46, 4543–4546.
- [23] a) K. Geibel, H. Mäder, *Chem. Ber.* 1970, 103, 1645–1651;
 b) F. D. Chattaway, F. Calvet y Prats, *J. Chem. Soc.* 1927, 685–692.
- [24] W. R. Bamford, T. S. Stevens, J. Chem. Soc. 1952, 4735-4740.
- [25] J. Barluenga, L. Llavona, M. Yus, J. M. Concellón, *Tetrahedron* 1991, 47, 7875 – 7886.
- [26] O. Hwang, G. Kim, Y. J. Jang, S. W. Kim, G. Choi, H. J. Choi, S. Y. Jeon, D. G. Lee, J. D. Lee, *Mol. Pharmacol.* 2001, 59, 1249 – 1255
- [27] a) K. Koroniak, G. Haufe, Synthesis 2010, 498-504; b) S. Kim, M. Cho, T. Lee, S. Lee, H.-Y. Min, S. K. Lee, Bioorg. Med. Chem. Lett. 2007, 17, 4584-4587.
- [28] S. W. Esch, T. D. Williams, S. Biswas, A. Chakrabarty, S. M. Levine, Cell. Mol. Biol. 2003, 49, 779 – 787.
- [29] R. S. Lankalapalli, A. Baksa, K. Liliom, R. Bittman, *Chem Med-Chem* 2010, 5, 682–686.